
Bluehat Shanghai 2019 | David “dwizzzle” Weston | Microsoft OS Security Group Manager

Advancing Windows Security

早上好上海！

Windows for PCs
Familiar desktop experience

Broad hardware ecosystem

Desktop app compat

One Core OS
Base OS

App and Device Platform

Runtimes and Frameworks

Windows on XBOX
10 Shell experience

Unique security model

Shared gaming experience

Windows on IOT
Base OS

App and Device Platform

Runtimes and Frameworks

Windows for …
Form factor appropriate

shell experience

Device specific scenario

support

Windows is evolving….

Malicious code
cannot persist on a
device.

Violations of
promises are
observable.

All apps and
system
components have
only the privilege
they need.

All code executes
with integrity.

User identities
cannot be
compromised,
spoofed, or stolen.

Attacker with
casual physical
access cannot
modify data or
code on the device.

Increasing Security
Windows 10 S

10 SClassic

2

1 Mandatory Code Signing

Complete Password-less “Admin-less” user account4

3 Internet scripts and macros

blocked1 Run as admin 2 Execute Unsigned Code

3 Use passwords 4 Mitigations not always on

10 S: Millions of installs, no widespread detections of malware

All code executes with integrity.

Code Integrity Improvements

CI policy removes many “proxy” binaries

Store signed only apps (UWP or Centennial)

“Remote” file extensions that support dangerous actions are blocked

Remote Office Macros are blocked by default

Windows 10 S
All binaries

Microsoft Signed

Proxy Binaries

Dangerous
Handlers

Remote
Dangerous

Files

1st Order Code Integrity protection

A “1st order” CI bypass enables a remote attack to

trigger initial unsigned code execution

10 S focuses on preventing “1st” order bypasses

A “2nd order” bypass enabled additional unsigned code

execution after reaching initial code execution

10 S offers less durable guarantees for “2nd” order

bypasses

Windows 10 S

Network

Physical Machine

Trigger
HandlerNo

Yes

Exploit mitigation Strategy

Increase Cost of

Exploitation

Control Flow

Integrity

Signed Code Only Read-only Data

Eliminate bug classes

Control Flow Challenges

Dangerous call
targets

Unprotected
Stack

Data
corruption

1 2 3

((void(*)(int, int)) funcptr)(0, 1);

obj->method1();

void function_A(int, int) { ... }

int function_B(int, int) { ... }

void function_C(Object*) { ... }

void Object::method1() { ... }

void Object::method1(int, int) { ... }

void Object::method2() { ... }

void Object2::method1() { ... }

Call sites Call Targets

CFG

First generation CFI in Windows, coarse grained for compatibility and performance

“Export suppression” used to reduce number of call sites in specific processes (example: Microsoft Edge)

Improving Control Flow Integrity

Introducing: XFG

Goal: Provide finer-grained CFI in a way that is efficient and compatible

Concept: restrict indirect transfers through type signature checks

((void(*)(int, int)) funcptr)(0, 1);

obj->method1();

void function_A(int, int) { ... }

int function_B(int, int) { ... }

void function_C(Object*) { ... }

void Object::method1() { ... }

void Object::method1(int, int) { ... }

void Object::method2() { ... }

void Object2::method1() { ... }

Call Sites Call Targets

Improving Control Flow Integrity

XFG design: basics

Assign a type signature based tag to each address-taken function

For C-style functions, could be:

hash(type(return_value), type(arg1), type(arg2), ...)

For C++ virtual methods, could be:

hash(method_name, type(retval), highest_parent_with_method(type(this), method_name), type(arg1), type(arg2), ...)

Embed that tag immediately before each function so it can be accessed through function pointer

Add tag check to call-sites: fast fail if we run into a tag mismatch

Improving Control Flow Integrity

mov rax, [rsi+0x98] ; load target address

call [__guard_dispatch_icall_fptr]

.align 0x10

function:

push rbp

push rbx

push rsi

...

mov rax, [rsi+0x98] ; load target address

mov r10, 0xdeadbeefdeadbeef ; load function tag

call [__guard_dispatch_icall_fptr_xfg] ; will check tag

.align 0x10

dq 0xcccccccccccccccc ; just alignment

dq 0xdeadbeefdeadbeef ; function tag

function:

push rbp

push rbx

push rsi

...

CFG instrumentation: Call Site

xFG instrumentation : Call Site

Target

Target

XFG Security

C-style function pointers can only call address-taken functions with same type signature

Call-site and targets have same number of arguments, arguments and return value have same types

C++ virtual methods can only call methods with same name and type in their class hierarchy

Can’t call wrong-type overload methods

Can’t call methods from other class hierarchies

Can’t call differently-named methods with same type in same hierarchy

This is much stronger than CFG, although it is an over-approximation

It should be noted that the use of a hash function means there could technically be collisions, but that is very unlikely (especially in a useful way) on a ~55 bit hash

Improving Control Flow Integrity

Control Flow Challenges

Dangerous call
targets

Unprotected
Stack

Data
corruption

1 2 3

Shadow Stack Protection

Initial attempt to implement stack protection in software failed

OSR designed software shadow stack (RFG) did not survive internal offensive
research

Control-flow Enforcement Technology (CET)

Return address protection via a shadow stack

Hardware-assists for helping to mitigate control-flow hijacking & ROP

Robust against our threat model (assume arbitrary RW)

Rearward Control Flow

CET Shadow Stack Flow:

Call pushes return address on both stacks

Ret/ret_imm

pops return address from both stack

Execption if the return addresses don’t match

No parameters passing on shadow stack

Return EIPn-1

Param 1

Param 2

Return EIPn

Return EIPn-1

Return EIPn

Stack usage on near CALL

ESP

after
call

SSP

after
call

+0

+4

Control Flow Integrity Challenges

Dangerous call
targets

Unprotected
Stack

Data
corruption

1 2 3

Introducing: Kernel Data Protection

Problem: Kernel exploits in Windows leverage

data corruption to obtain privilege escalation

Current State: Hypervisor-based code integrity

prevents dynamic code injection and enforces

signing policy

Prevent code is not enough, kernel has many

sensitive data structures

Kernel Data Protection (KDP) uses Secure Kernel

to enforce immutability

Data Corruption Protection

CVE-2016-7256 exploit: Open type font elevation of privilege

Corrupting Code Integrity Globals (credit: FuzzySec)

Data Corruption Protection

Admin

Static Data

Dynamic Data

VBOX
Capcom
CPU-Z

Attacker Process

NTSTATUS MmProtectDriver (

In PVOID AddressWithinSection,

In ULONG Size,

_In_opt_ ULONG Flags);

Kernel Data Protection:

Mechanism to perform read-only pool allocations

RO PTE Hypervisor Protected when VBS is enabled

Validation mechanism to allow callers to detect whether

the memory they’re referencing is protected pool allocation

All apps and system components have only
the privilege they need

Introducing: Admin-less

Elevation is been blocked Admin-less S mode

New Standard user type can make some

device-wide changes

Kernel Data Protection (KDP) uses Secure Kernel

to enforce immutability

“Admin-less” Mode

Malicious code cannot persist on a device.

Firmware Security Issues

ESET discovers SEDNIT/APT28 UEFI malware

SMM attacks to bypass VBS

“ThinkPWN” exploit of Lenovo firmware

https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html

System Guard with DRTM

Utilize DRTM (Intel, AMD, QC) to perform TCB measurements from a Microsoft
MLE

“Assume Breach” of UEFI and measure/seal critical code and data from hardware
rooted MLE

Measured values:

Code integrity Policy

Hypervisor, kernel hashes

UEFI Vars

Etc…

Zero Trust

Measurements of key properties available in PCRs and TCG logs

Attest TCB components through System Guard runtime attestation + Microsoft
Conditional Access + WDATP

SMM Attacks

Can be used to tamper HV and SK post-MLE

SMM paging protections + attestation on roadmap

Improving Boot Security

http://www.uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf

Improving Boot Security

System Guard with DRTM

External researchers and OSR REDTEAM highlighted SMM risks for DRTM
and VBS

Arbitrary code execution in SMRAM can be used to defeat Hypervisor

Malicious code running in SMM is difficult to detect

Improving Boot Security

SMM vulnerabilities used in OSR
REDTEAM reported to Lenovo

https://www.blackhat.com/docs/us-16/materials/us-16-Wojtczuk-Analysis-Of-The-Attack-Surface-Of-Windows-10-Virtualization-Based-Security.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf
https://support.lenovo.com/us/en/product_security/len_3837

Mitigating SMM exploitation

Intel Runtime BIOS resilience provides the following security
properties for SMM:

SMM entry point locked down

All code within SMM locked down

Memory map and page properties locked down

OS and HV memory not directly accessible from SMM

Protecting SMM

SMM Page
Table

SMI
Handler

SMM
BootCode/BootData

MMIO

SMRAM

Reserved

ACPINvs

RuntimeCode/RuntimeData

ACPI Reclaim

BootCode/BootData

LoaderCode/LoaderData

SMM Paging Audit

SMM Protection

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/intel-security-essentials-solution-brief.pdf
https://github.com/Microsoft/MS_UEFI/tree/share/XmlAndUnitTest/UefiTestingPkg/AuditTests/SmmPagingAudit
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf

Attackers with casual physical access
cannot modify data or code on the device.

Increasing Physical Attacks

LPC/SPI TPM VMK Key Extraction with Logic Analyzer

Sources: 1, 2, 3

Bitlocker Cold Boot Attacks

Sources: 1

DMA Attacks with PCILeech

Sources: 1, 2

https://pulsesecurity.co.nz/articles/TPM-sniffing
https://www.jishuwen.com/d/2Bkg/zh-tw
https://github.com/lynxis/lpc_sniffer
https://blog.f-secure.com/cold-boot-attacks/
http://blog.frizk.net/2016/11/disable-virtualization-based-security.html
https://github.com/ufrisk/pcileech-fpga

Security Goals

Prevent ‘’evil cleaner’’ drive by physical attacks from

malicious DMA attacks

Design Details

Use IOMMU to block newly attached Thunderbolt™ 3

devices from using DMA until an user is logged in

UEFI can enable IOMMU an BME in early boot until Windows

boots (See Project Mu)

Automatically enable DMA remapping with compatible

device drivers

In future releases, we are looking to harden protection on all

external PCI ports and cross-silicon platforms

Windows DMA protection Connect peripheral

New devices are
enumerated and

functioning

OSUser

Peripheral
Drivers opted-

in DMAr?

Yes

Enable DMAr for
the peripherals

No
User logged in

AND Screen
unlocked?

No

Wait for user
to login/
unlock
screen

Yes

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf
https://github.com/microsoft/mu_basecore/blob/ccf92a414580f73afb9ca9efffb93489a2f1158b/MdeModulePkg/Bus/Sd/EmmcBlockIoPei/DmaMem.c

Security Goals

Prevent ‘’evil cleaner’’ drive by physical attacks from

malicious DMA attacks

Design Details

Use IOMMU to block newly attached Thunderbolt™ 3

devices from using DMA until an user is logged in

Automatically enable DMA remapping with compatible

device drivers

In future releases, we are looking to harden protection on all

external PCI ports and cross-silicon platforms

Thunderclap Attack

Locked device
Encryption key is removed from memory Encryption key is recomputed using user entropy

Windows Data Protection Under Lock

Per-file encryption provides a second layer of protection at rest

Key is derived from user secret (Hello, Biometric)

Unlocked device

Messages

Encrypted, key discarded upon lock

Passwords,

credit card

info

Health data
Documents

and photos
App1 Data App2 Data App3 Data

Encrypted, key discarded upon shutdown

App1 App2 App3

Unenlightened Apps

Messaging

Apps
Edge Health

Mail,

Photos,

Documents,

etc.

Enlightened Apps

BitLocker protection
promise

User identities cannot be compromised,
spoofed, or stolen.

Windows Hello and NGC

Offers biometric authentication and hardware backed

key storage

PIN vulnerable to input attacks from malicious admin

Improving Identity Security
Future version of Windows include biometric hardening

enabled through virtualization

Biometric hardening of the data path using

virtualization

Hardening of credential release

Improving Identity Security

Sensor Adapter

Biometric Unit

Engine Adapter

Feature Extraction

Template Construction

Storage Adapter

Sensor

Driver

Windows Biometric Framework

Template DB

Spoofs

Replay

Leak/Inject

Replay

Leak/Inject

Modify

templates

Template

injection

Modify match

result

Add

unauthorized

templates

Inject match

event

Replay

Steal TPM

authblob

Windows Hello Attack Surface

Sensor

Driver

Template DB

Engine Adapter

Feature Extraction

Template Construction

Sensor Adapter

Storage Adapter

bioIso.exe

Secure Driver

Windows Hello Attack Surface

Sensor Adapter

Biometric Unit

Engine Adapter

Feature Extraction

Template Construction

Storage Adapter

Sensor

Driver

Template DB

Spoofs

Replay

Leak/Inject

Replay

Leak/Inject

Modify

templates

Template

injection

Modify match

result

Add

unauthorized

templates

Inject match

event

Replay

Steal TPM

authblob

Beyond Passwords

Violations of promises are observable.

Platform Tamper Detection for Windows
Spanning device boot to ongoing runtime process tampering

Designed for remote assessment of device health

Platform approach to benefit a variety of 3rd parties and scenarios

Hardware rooted device trust
Leverage the VBS security boundary to raise the bar on anti-tampering

Challenging to build tamper detection schemes on top of Windows

Extensible platform component that can be used via forthcoming public API

Tamper Evident Windows

1 2 3

https://commons.wikimedia.org/wiki/File:AEC-HoR-ballots-sealed-2.jpg
https://commons.wikimedia.org/wiki/File:Tamper_evident_currency_bag.jpg
https://www.flickr.com/photos/wetfeet2000/7688554140

Admin

EPROCESS

Driver Dispatch

Process Mitigations

VBOX
Capcom
CPU-Z

Attacker Process

Closing

Platform features rapidly changing

Windows is evolving quickly to increase protections against new

attacks

Aspirational goals to provide strong guarantees across a growing

threat model

Researchers and Community help us improve

Programs such as bug and mitigation bounty are critical

We want to work together with research communities in China

and beyond to learn more about current and future attacks

Windows needs the community

