
How to Find 12 Kernel
Information Disclosure
Vulnerabilities in 3 Months

Tanghui Chen, Long Li | Baidu Security Lab

2019

Contents

0. Who am I?

1. Understanding Vulnerabilities

2. Vulnerability Analysis
• Heap and stack data poisoning

• Vulnerability detection techniques

• CVE Analysis

3. Results

Who am I?

• Senior Security R&D Engineer at

Baidu Security Lab

• Has been engaged in Windows

Kernel Security Development for

years

• Rootkit expert

• Accidentally involved in the field

of vulnerability research Tanghui Chen

chenhui00530@163.com

What is the Kernel Information Disclosure
Vulnerability?

There are many information disclosure vulnerabilities in Windows

kernel that may lead to the ASLR bypass or critical system

information disclosure, which can be exploited by attackers to reveal

confidential information such as:

• Encryption keys

• Kernel objects

• Key kernel module addresses

• …

Root Causes of the Vulnerability

CVE-2018-8443

1. Call ZwDeviceIoControlFile (..., 0x7d008004, Output,…) in

user mode

2. ZwDeviceIoControlFile switches to kernel mode after
system call

3. Output contains the uninitialized data in kernel stack after
returning to the user mode

System

Calls

Information

Disclosure

Memory

SpaceAPI/Interface

Interface

Uninitialized
data

Kernel Object

Pointer

Module Base

Address
…

Existing Vulnerability Mining Techniques

• BochsPwn

❑ CPU emulator

• DigTool

❑ Heavyweight VT techniques

• Instrumentation

Discovering Information Disclosure Vulnerability

1.Poison kernel heap and stack

data, and fill padding flag data

2.Data is checked at a certain time

when the application layer

memory is written. If there is

padding flag data in the memory,

it’s possible a vulnerability exists.

3. Analyze and confirm the

vulnerability

MemoryCheckpoint

Detect

1. Stack/Heap

Poisoning
2. Data Detection

3. Vulnerability

Analysis

Step 1: Heap/Stack Data Poisoning Techniques

• Hook KiFastCallEntry, Kernel Stack Poisoning

• Hook ExAllocatePoolWithTag, Kernel Heap Poisoning

• Fill the heap and stack memory data with padding flag data, such

as AA

In the Hook KiFastCallEntry, get kernel stack memory by IoGetStackLimits, and

fill padding flag data

IoGetStackLimits(&LowLimit, &HighLimit);

__asm{

xor eax, eax;

mov al, g_cFlags; //0xAA

mov edi, LowLimit;

mov ecx, Esp_Value;

sub ecx, LowLimit;

cld;

rep stosb;

}

Stack Poisoning

Fill padding flag data when calling ExAllocatePoolWithTag to allocate memory

PVOID NTAPI HOOK_ExAllocatePoolWithTag(...)

{

PVOID Buffer = NULL;

Buffer = pfn_ExAllocatePoolWithTag(PoolType, NumberOfBytes, Tag);

if (Buffer){

memset(Buffer, g_cFlags, NumberOfBytes); //将内存初始化特殊数据，如0xAA

}

return Buffer;

}

Heap Poisoning

Thoughts on Heap and Stack Data Poisoning

• Heap and stack data poisoning techniques are relatively simple,

there is no good or bad techniques

• If the memory has data that is the same as the poisoned data, it’s

possible to receive false positives.

• Therefore, using variable padding flag data for poisoning can

help reduce false positives.

Step 2: Research on Data Detection Techniques

Currently we have CPU emulator and VT data detection
techniques.

Are there more and better techniques?

Data Detection Techniques Research

We came up with three techniques for data detection based on our

research:

• Nirvana (first time being used in kernel information

disclosure vulnerability mining)

• memcpy/memmove, referred to as memcpy (most lightweight

technique)

• movs

Nirvana is a lightweight, dynamic translation framework provided by Microsoft that
can be used to monitor and control the (user mode) execution of a running process
without needing to recompile or rebuild any code in that process (from Hooking
Nirvana@Alex Ionescu). This is the first time Nirvana being used in kernel information
disclosure vulnerability mining.

Nirvana can be used to set the callback function when the system call returns to the
user mode, and the stack data can be detected in the callback function.

ZwSetInformationProcess(NtCurrentProcess(),ProcessInstrumentationCallback,&Info64,sizeof(Info64));

typedef struct _PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION{

ULONG_PTR Version;

ULONG_PTR Reserved;

ULONG_PTR Callback;

}PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION

Nirvana: Overview

__declspec (naked) VOID InstrumentationCallback()

{

__asm{

//The code is omitted...

mov eax, fs:[0x8];

mov edi, fs:[0x4];

__loop:

cmp dword ptr[eax], g_cFlag; //如0xAAAAAAAA

jz __find;

add eax, 4;

cmp eax, edi;

//The code is omitted...

jmp dword ptr fs : [0x1B0];

}

}

Nirvana: Implementation

The scene captured by Nirvana

16

Nirvana: Pros

• Nirvana is supported by Windows Vista and later systems

• Implementation is easy by using the system provided interface

• Good compatibility

Nirvana: Cons

• Can only detect stack data, almost impossible to detect heap data

• It is relatively difficult to analyze and develop POC without

catching the real-time disclosure of information

memcpy: Overview

• memcpy/memmove is being used for copying data from

kernel space

kernel space

user space

用户态内存

内核态内存

memcpy(dst, src, size);

检测

Hook memcpy/memmove，detect whether dst is user mode address and whether the data

includes padding flag data

void * __cdecl HOOK_memcpy(void * dst, void * src, size_t count)

{

//代码有省略...

if ((ULONG_PTR)dst < MmUserProbeAddress){

pOffset = (PUCHAR)src;

while (pOffset <= (PUCHAR)src + count - sizeof(DWORD)){

if (*(DWORD *)pOffset == g_dwDwordFlags){

//checked

}

}}

//代码有省略...

}

memcpy: Implementation

memcpy: Features

• Easy to implement, outstanding performance with almost no

performance loss

• Good compatibility

• Being able to catch the first scene of the vulnerability, analyzing and

writing POC is simple

• Outstanding advantages, few flaws

Memcpy in-depth study

• If size is a variable，nt calls memcpy directly

• If size is constant, memcpy is optimized

• If size is a large constant, memcpy is

optimized to movsd

• Memmove will not be optimized

Exploring movs

• memcpy optimizations

• Eventually compiled into movs instructions

• Detecting data using mpvs can resolve the insufficient memcpy

coverage problem in some rare cases

movs: Implementation

• movs dst, src; (F3A5) int 20h; (CD20) are two bytes

• Scan the nt module and replace all movs with int 20h

• Customize int 20h interrupt handler, KiTrap20

• Detecting memory data in KiTrap20

if (*(WORD *)pOffset == 0xA5F3){ //rep movs dword ptr es:[edi],dword ptr [esi]

MdlBuffer = GetMdlBuffer(&Mdl, pOffset, 2);

*(WORD *)MdlBuffer = 0x20CD;//int 20

}

__declspec (naked) VOID HOOK_KiTrap20()

{

__asm {

//The code is omitted...

pushfd;

pushad;

call DetectMemory;

popad;

popfd;

rep movs dword ptr es:[edi], dword ptr[esi];

iretd; }

//The code is omitted...

}

movs: Implementation

VOID

DetectMemory(PVOID DestAddress, PVOID SrcAddress, SIZE_T Size)

{

//The code is omitted...

if ((ULONG_PTR)DestAddress < MmUserProbeAddress){

pOffset = (PUCHAR)SrcAddress;

if (*(ULONG_PTR *)pOffset == g_dwDwordFlags){

//checked

}

//The code is omitted...

}

}

movs: Implementation

movs: Features

• Data detection is more comprehensive than memcpy coverage

• Ability to capture the vulnerability real-time and easy to

analyze/develop the POC

Step 3: Vulnerability Analysis

• Use live debugging for analysis and confirmation when a

vulnerability is captured.

• Switch to user mode. If the padding flag data exists in user
mode memory, it is safe to confirm a kernel information
disclosure vulnerability exists.

• Develop PoC based on analysis of callstack and reverse

engineering of user mode code that issues the syscall.

Vulnerability Analysis

• Memories were copied multiple times for some of the

vulnerabilities, which makes the POC analysis and development

very difficult.

• We implemented a set of memory tracking tools to assist our

analysis, which can:

• Memory trace

• Memory conditional breakpoint

CVE-2018-8443, a vulnerability detected in win10 17134 x64

CVE Analysis

Go back to mpssvc.dll and verify that user-mode memory contains special tags.

CVE Analysis

Go back to mpssvc.dll and find the code that triggered the vulnerability

CVE Analysis

CVE Analysis

Final completion of the POC

CVE Analysis

We discovered 12 windows kernel information disclosure vulnerability in three months, all have

CVE assigned.

7 of the CVEs received the maximum bounty award $5,000

Results

Thinking

• Just so…

• User mode memory read-only (remove PTE write bit)

• Reverse tracking

• …

？

Thank you
Tanghui Chen

chenhui00530@163.com

