SLUE-AT

SHANGHAI 2019

Is my Container Secure?
Study of Vulnerability in Container World

Cecilia Hu, Yue Guan, Zhaoyan Xu
Palo Alto Networks

Agenda

> Introduction

» Basic Statistics
» Study of Vulnerability
» Image in your Cluster

» Practical Suggestions

Background

Containers have recently become a popular approach to provision
Micro-service over the Cloud.

With more advanced cloud applications deployed, the security
risks of images becomes a big headache for DevOps team.

We want to know how bad is the situation and how we could
defense against the threats.

Motivation

In this talk, we will cover:

- How is the state-of-art status of container image security?

- How to measure the security of container image in your application
environment?

- How to mitigate threats from the vulnerable container images?

- What is best practice for securing your images?

Agenda

vV VYV Y V V

Introduction

Data Collection

Study of Vulnerability
Image in your Cluster

Practices Suggestions

Approach

We study the problem by:

STEPI: We crawl public-available images repositories from multiple
sources, such as DockerHub and Github.

STEP II: We scan these images using container image scanners and
get vulnerabilities information for these images.

STEP Ill: We analyze these vulnerabilities using our VulnerDB and
discloses trends for these vulnerabilities.

Data Source

Source

DockerHub
Clair

hub.docker.com

Container Analysis API

Dockerfile from Github

Description

Image Repository where we can directly
download/crawl docker images

Open Source Vulnerability Scanner to get system-
wide vulnerabilities information

Image scanning result for public assess

Image analysis service provided by Google Cloud

From the pull count, we can get popular open-
source projects which could be deployed as
container

https://hub.docker.com/

Data Collection

[Docker Hub} [Publlc Image}
Repos

» Download Images Ej »| Analysis Report
* Vulnerabilities t 1
Extract Images and Metadata
Metadata DB
L

Image Vulnerability _%_
Scanning @ ‘ O
¥ Vulnerabilities Deployment

Vulnerability Knowledge DB Information
Dependency Analysis

Data Collection

Image Image ID Sha 256 for each Unique Image
Information

Image Public Download The Total Downloads for each Image
Information Counts

Image Update Time Exact Date time for the Last Update for
Information each Image

Image Commands/Dockerfile The commands it runs to build the image
Information

Data Collection (cont)

Category
Vulnerability
Information

Vulnerability
Information

Vulnerability
Information

Vulnerability
Information

Deployment
Information

Data Field

Time

Exploitability
Severity Ranking
Associated Package

Uses

Description

First reported time and last update time

How the vulnerability can be exploited
(i.e, net exploitable, etc)

CVSS 3.0/2.0, PANW Score, Signature
triggers in history

Name and version of vulnerable images

Customized fields for images in your
K8s/Openshift deployment

Basic Statistics for Dataset

ltem

of Image
Repos

of Dockerfile

% of Vulnerable
Image Repos
(latest)

Statistics

151

976

81%

ltem

of Image Tags

of Unique
Vulnerabilities

% of Vulnerable
Image Tags

Statistics

22106

4259

69.1%

Basic Statistics for Dataset (cont)

Image Repos vs Image Tags

Image Repos vs Image Tags

2FEEG

Founding: Popular Images has large number of Tags(Releases) and Most Repos
have monthly release schedule.

Basic Statistics for Dataset (cont)

Tag Growth over Time

Tag Growth over Time

== Tag Count

2016-1 20171 2018-1 2019-1

Founding: Popular Images has large number of Tags(Releases) and Most Repos
have monthly release schedule.

Agenda

vV VYV Y V V

Introduction
Basic Statistics

Study of Vulnerability

Image in your Cluster

Practices Suggestions

Severity

Image Severity Distribution

CVE Distribution in Images

B Latest Images

1CVE B Images (x100)

2-3CVEs Medium .

4-6 CVEs

7-9 CVEs

10+ CVEs

Founding: Vulnerabilities commonly exists in majority of public-available
images. 81% of images have at least one vulnerability

Exploitability

Access Vector Distribution

Vulnerability Type Distribution

memory corruption
2.5
bypass a restriction

29
3.3

gain privileges
4.4%
obtain information

denial of service
41.7%

7 99,
/.2

Remote
77.4 execute code

11.3%

POC Analysis

Has POC

overflow

26.7

No POC

Itvi

Time Sens

Time Distribution for Repository

Time Distribution for Vulnerability

B Repositories

B Vulnerabilities

Popularity vs Vulnerability Trend

Severity Distribution based on Popularity

B Critical
B High

Medium

B Low

LA

10k+ 50k+ 100k+ 500k+ TM+ 5M+ 10M+

Agenda

vV VYV Y V V

Introduction
Basic Statistics
Study of Vulnerability

Image in your Cluster

Practices Suggestions

Risk Evaluation for K8s

Some factors we should consider for when we use vulnerable image(s) for K8s pod

Factor

Deployment
Environment

Pod Privilege

Service Accounts
Associated

Questions

Is the vulnerable image deployed
on production namespace or
not?

What kind of privilege we give to
the vulnerable image related
pod?

What service accounts we
associated with vulnerable
pod/image?

Dangerous Examples

Vulnerable images deployed on
production namespace not test
namespace.

The pod is a privileged pod or it has
been given extra capabilities.

The service accounts associated has ef

Risk Evaluation for K8s (cont)

Some factors we should consider for when we use vulnerable image(s) for K8s pod

Factor Questions Dangerous Examples
Service Does the vulnerable pod The pod is exposed to internet.
Exposed expose external-accessible

service?
Network What virtual/physical The pod can visit internet.
Connected network the pod associated? The pod could connect to high

privileged pod.

Examples

Servicehccount

metadata:

icehecountToken: false

apiVer
kind: Pod
retadata:

name: my-pod

spect
serviceBccountName: teet sa

kind: ClusterRoleBinding
apiVersion:rbac.authorization.kBs.io/vlbeta
metadata:

name: test ea binding
subjects:

- kind: Serviceccount

name: st ga

namespace: office

roleRef:

kind: ClusterRole
name: deployment-manager

apiversion: policy/vibeta

kind: Role
apiVersion: rbac.authorization.kBs.ic/vlbetal
metadata:
namespace: office
name: deployment-manager
rules:

Iresource:

["", "extensions", "apps")
["deployments”, “replicasets",

aiasets

verbs: ["get", "list", “watch", “create",

kindiPodaecuritypolicy

netadatat

Kin sLerk ‘
name: privileged apiVersions rbac,authorization.ki
speci \ motadata:
privileged: true \ anet Adal at
ipt

[—— ’
pods”) RuUBASAnY
"update"]

selinux:

rule: RunAsAny

n a Pod Securty Policy Use a Pod Security Polcy

Pod with a Service Account of High Privilege

High Privileged Pod Security Policy

Mitigation Strategy

Solutions
Patch the

Vulnerabilit
y

Replace the
base Image

Deploy
Application
Firewall

How

Install Patches
for Officials

Change the
base image
from Dockerfile

Deploy an
Application-
level Firewall

Pros Cons
Solve the - Patch not always available in time.
problem - Hard to patch in running container
inherently

Secured base image not always
available

Need extra test to ensure stability
Hard to change in running container

Easy to apply

Auoud
uoIpPy

Prevent May not cover all vulnerabilities
exploitation

in runtime

Easy to apply

Agenda

vV VYV Y V V

Introduction

Basic Statistics

Study of Vulnerability
Image in your Cluster

Practices Suggestions

Container Vulnerability Management Checklist

Suggested Stage

Integration Stage

Integration Stage

Integration Stage

Check Item

Vulnerabilities in
Image

Replaceable Base
Images

Define Risk
Criteria

Action

Use Image Scanner to Scan Vulnerabilities

If base image has vulnerability, find
replaceable and safe base image.

Use criteria, such as CVSS score, exploitable
vector, to define risk level for vulnerabilities

Container Vulnerability Management Checklist(cont)

Suggested Stage Check Item

Delivery Stage Risk evaluation

Delivery Stage Deployment
Policy

Delivery Stage Policy
Enforcement

Action

Define risk tolerations criteria for your
namespace/service/pod/deployment

Define policies to match vulnerabilities with
deployment risk requirement

Use tools to enforce your security policies

Container Vulnerability Management Checklist (cont)

Suggested
Stage
Runtime Stage

Runtime Stage

Runtime Stage

Runtime Stage

Check Item

Scan Image

Deploy an
application-level
firewall

Monitor Traffic

Monitor Host

Action

Find new discovered vulnerability in running
containers

Deploy an application firewall with up-to-
date intrusion prevention ability

Detect any abnormal traffic between pods
using service mesh policies

Deploy host-based intrusion detection to
prevent host-based privilege escalation

Questions?

SHANGHAI 2019

Is my Container Secure?
Study of Vulnerability in Container World

Cecilia Hu, Yue Guan, Zhaoyan Xu
Palo Alto Networks

