
Momigari
Overview of the latest Windows OS kernel exploits

found in the wild

Boris Larin

@oct0xor

30-May-19Anton Ivanov

@antonivanovm

$whoweare

Senior Malware Analyst (Heuristic Detection and Vulnerability Research Team)

Boris Larin

Head of Advanced Threats Research and Detection Team

Anton Ivanov

Twitter: @oct0xor

Twitter: @antonivanovm

3

What this talk is about

Momigari: the Japanese tradition

of searching for the most beautiful

leaves in autumn

Jiaohe city, Jilin province, Northeast China. [Photo/Xinhua]

http://en.safea.gov.cn/2017-10/26/content_33734832_2.htm

http://en.safea.gov.cn/2017-10/26/content_33734832_2.htm

4

What this talk is about

1) We will give brief introduction about how we find zero-day exploits and challenges that we face

2) We will cover three Elevation of Privilege (EOP) zero-day exploits that we found exploited in the wild

• It is becoming more difficult to exploit the Windows OS kernel

• Samples encountered ITW provide insights on the current state of things and new techniques

• We will cover in detail the implementation of two exploits for Windows 10 RS4

3) We will reveal exploitation framework used to distribute some of these exploits

5

What this talk is about

Kaspersky Lab detection technologies

6

We commonly add this detail to our reports:

This two technologies are behind all exploits that we found last year

Technology #1 - Exploit Prevention

7

Delivery
Memory

manipulation
Exploitation

Shellcode

execution

Exploitation

prevented

Detection and

blocking

Payload

execution

start

Technology #2 - The sandbox

Artifacts assembled

for analysis

A file / URL for testing
- Execution logs

- Memory dumps

- System / registry changes

- Network connections

- Screenshots

- Exploit artifacts

Verdict and rich data on activity

Test VMs

The file / URL is sent to several test VMs

Artifacts logged

Detection of exploits

Find Develop

Research

How-to:

Exploits caught in the wild by Kaspersky Lab

• May 2018 - CVE-2018-8174 (Windows VBScript Engine Remote Code Execution

Vulnerability)

• October 2018 - CVE-2018-8453 (Win32k Elevation of Privilege Vulnerability)

• November 2018 - CVE-2018-8589 (Win32k Elevation of Privilege Vulnerability)

• December 2018 - CVE-2018-8611 (Windows Kernel Elevation of Privilege

Vulnerability)

• March 2019 - CVE-2019-0797 (Win32k Elevation of Privilege Vulnerability)

• April 2019 - CVE-2019-0859 (Win32k Elevation of Privilege Vulnerability)

One year:

What keeps us wake at night

Six exploits found just by one company in one year

One exploit is remote code execution in Microsoft Office

Five exploits are elevation of privilege escalations

While these numbers are huge it got to be just a tip of an iceberg

Example of payouts for single exploit acquisition program

https://zerodium.com/program.html:

Why don’t we see many exploits targeting web browsers, other

applications or networks with ‘zero-click’ RCE being caught?

https://zerodium.com/program.html

Even if an exploit was detected, most case analysis requires more data than can be acquired by the detection

alone

Zero-day finding complications

Our technologies are aimed at detection and prevention of exploitation

But to find out whether or not detected exploit is zero-day requires additional analysis

Some exploits are easy to detect Sandboxed process starts to perform weird stuff

Some exploits are hard to detect
False Alarms caused by other software

Example: two or more security software installed on same machine

Field for improvement (web browsers)

Script of exploit is required for further analysis

Scanning the whole memory for all scripts is still impractical

Possible solution:

Browser provides interface for security applications to ask for loaded scripts (similar to Antimalware Scan

Interface (AMSI))

Problems:

If implemented in the same process it can be patched by exploit

Detection of escalation of privilege

Escalation of privilege exploits are commonly used in late stages of exploitation

Current events provided by operating system often are enough to build detection for them

As they are usually implemented in native code - they are can be analyzed easily

Escalation of privilege exploits are probably the most suitable for analysis

15

Case 1

CVE-2018-8453

Exploitation module was distributed in encrypted form.

Sample that we found was targeting only x64 platform

• But analysis shows that x86 exploitation is possible

Code is written to support next OS versions:

• Windows 10 build 17134

• Windows 10 build 16299

• Windows 10 build 15063

• Windows 10 build 14393

• Windows 10 build 10586

• Windows 10 build 10240

• Windows 8.1

• Windows 8

• Windows 7

16

Win32k

Three of four vulnerabilities we are going to talk about today are present in Win32k

Win32k is a kernel mode driver that handles graphics, user input, UI elements…

It present since the oldest days of Windows

At first it was implemented in user land and then the biggest part of it was moved to kernel level

• To increase performance

Really huge attack surface

• More than 1000 syscalls

• User mode callbacks

• Shared data

More than a half of all kernel security bugs in windows are found in win32k.sys

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_10_DerbyCon/2018_10_DerbyCon_State_of%20_Win32k_Security.pptx

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_10_DerbyCon/2018_10_DerbyCon_State_of%20_Win32k_Security.pptx

17

Security improvements

In past few years Microsoft made a number of improvements that really complicated kernel exploitation and

improved overall security:

Prevent abuse of specific kernel structures commonly used to create an R/W primitive

• Additional checks over tagWND

• Hardening of GDI Bitmap objects (Type Isolation of SURFACE objects)

• …

Improvement of kernel ASLR

• Fixed a number of ways to disclose kernel pointers through shared data

CVE-2018-8453 was the first known exploit targeting Win32k in Windows 10 RS4

Results of this work really can be seen from exploits that we find. Newer OS build = less exploits.

18

CVE-2018-8453

From code it feels like the exploit did not initially support Windows 10 build

17134, and the support was added later

There is a chance that the exploit was used prior to the release of this build,

but we do not have any proof

19

CVE-2018-8453

win32k!tagWND (Windows 7 x86)

Vulnerability is located in syscall

NtUserSetWindowFNID

Microsoft took away win32k!tagWND from debug

symbols but FNID field is located on same offset in

Windows 10 (17134)

FNID (Function ID) defines a class of window

(it can be ScrollBar, Menu, Desktop, etc.)

High bit also defines if window is being freed

• FNID_FREED = 0x8000

20

CVE-2018-8453

In NtUserSetWindowFNID syscall tagWND->fnid is

not checked if it equals to 0x8000 (FNID_FREED)

Possible to change FNID of window that is

being released

21

CVE-2018-8453

Microsoft patched vulnerability with call to

IsWindowBeingDestroyed() function

22

CVE-2018-8453

At time of reporting, MSRC was not sure that exploitation was possible in the latest version build of

Windows 10 and asked us to provide the full exploit

The following slides show pieces of the reverse engineered exploit for Windows 10 build 17134

For obvious reasons we are not going to share the full exploit

23

CVE-2018-8453

Exploitation happens mostly from hooks set on usermode callbacks

Hooked callbacks:

To set hooks:

• Get address of KernelCallbackTable from PEB

• Replace callback pointers with our own handlers

fnDWORD fnNCDESTROY fnINLPCREATESTRUCT

Patch Table

24

CVE-2018-8453

Exploit creates window and uses ShowWindow() callback will be triggered

*Shadow will be needed later for exploitation

fnINLPCREATESTRUCT

SetWindowPos() will force ShowWindow() to call AddShadow() and create shadow

25

CVE-2018-8453

Exploit creates scrollbar and performs heap groom

• Its performed with message WM_LBUTTONDOWN sent to scrollbar window

• Leads to execution of win32k!xxxSBTrackInit() in kernel

A left mouse button click on the scrollbar initiates scrollbar track

Prepare memory layout

Send message to scrollbar window for initiation

26

CVE-2018-8453

In exploit there are five (!) different heap groom tactics

What distinguish zero-day exploits from regular public exploits?

Usually it’s the amount of effort put into to achieve best reliability

27

CVE-2018-8453

fengshui_17134: Blind heap groom

fengshui_16299:

• Register 0x400 classes (lpszMenuName =

0x4141…)

• Create windows

• Use technique described by Tarjei Mandt to leak

addresses

NtCurrentTeb()->Win32ClientInfo.ulClientDelta

fengshui_15063 is similar to fengshui_16299

fengshui_14393:

• Create 0x200 bitmaps

• Create accelerator table

• Leak address with gSharedInfo

• Destroy accelerator table

• Create 0x200 bitmaps

fengshui_simple: CreateBitmap & GdiSharedHandleTable W
in

d
o

w
s
 1

0
 M

it
ig

a
ti

o
n

 I
m

p
ro

v
e
m

e
n

ts

28

CVE-2018-8453

xxxSBTrackInit() will eventually execute xxxSendMessage(, 0x114,…)

0x114 is WM_HSCROLL message

Translate message to callback

WM_HSCROLL fnDWORD callback

How callbacks are executed?

29

CVE-2018-8453

In exploit there is state machine inside the fnDWORD usermode callback hook

• State machine is required because fnDWORD usermode callback is called very often

• We have two stages of exploitation inside fnDWORD hook

Stage 1 - Destroy window inside fnDWORD usermode callback during WM_HSCROLL message

First thing that is going to be released is shadow (that’s why shadow is required to be initialized)

It will lead to execution of fnNCDESTROY callback

30

CVE-2018-8453

During fnNCDESTROY usermode callback find freed shadow and trigger vulnerability

FNID of shadow window is no longer FNID_FREED!

Call stack:

31

CVE-2018-8453

Due to changed FNID message WM_CANCELMODE will lead to freeing of USERTAG_SCROLLTRACK!

Stage 2 (inside the fnDWORD hook)

This will eventually result in Double Free

Call stack:

32

CVE-2018-8453

Freeing USERTAG_SCROLLTRACK with WM_CANCELMODE gives opportunity to reclaim just freed memory

Free bitmats allocated in Fengshui(), and allocate some more

33

CVE-2018-8453

xxxSBTrackInit() will finish execution with freeing USERTAG_SCROLLTRACK

But it will result in freeing GDITAG_POOL_BITMAP_BITS instead

Free USERTAG_SCROLLTRACK

Free GDITAG_POOL_BITMAP_BITS

Double free:

34

CVE-2018-8453

New mitigation: GDI objects isolation (Implemented in Windows 10 RS4)

Good write-up by Francisco Falcon can be found here:

https://blog.quarkslab.com/reverse-engineering-the-win32k-type-isolation-mitigation.html

New mitigation eliminates common exploitation technique of using Bitmaps:

• SURFACE objects used for exploitation are now not allocated aside of pixel data buffers

Use of Bitmap objects for kernel exploitation was believed to be killed

But as you can see it will not disappear completely

35

CVE-2018-8453

Exploit creates 64 threads

Each thread is then converted to GUI thread after using win32k functionality

THREADINFO is undocumented but structure is partially available through win32k!_w32thread

GetBitmapBits / SetBitmapBits is used to overwrite THREADINFO data

It leads to THREADINFO to be allocated in place of dangling bitmap

36

CVE-2018-8453

Control over THREADINFO allows to use SetMessageExtraInfo gadget

Peek and poke *(u64*)((*(u64*) THREADINFO+0x1A8)+0x198)

0x1A8 - Message queue 0x198 - Extra Info

37

CVE-2018-8453

Replace message queue pointer with arbitrary address

Read quadword, but overwrite it with zero

Restore message queue pointer

Replace message queue pointer with arbitrary address

Set quadword at address

Restore message queue pointer

Restore original value

38

CVE-2018-8453

THREADINFO also contains pointer to process object

Exploit uses it to steal system token

39

Case 2

CVE-2018-8589

Probably the least interesting exploit presented

today but it led to far greater discoveries

Race condition in win32k

Exploit found in the wild was targeting only

Windows 7 SP1 32-bit

At least two processor cores are required

40

CVE-2018-8589

CVE-2018-8589 is a complex race condition in win32k due to improper locking of messages sent

synchronously between threads

Found sample exploited with the use of MoveWindow() and WM_NCCALCSIZE message

41

CVE-2018-8589

Both threads have the same window procedure

Second thread initiates recursion

Thread 1 Thread 2

42

CVE-2018-8589

Window procedure

Recursion inside WM_NCCALCSIZE window message callback

Move window of opposite thread to increase recursion

Opposite thread
This thread

Trigger race condition on maximum level of recursion during

thread termination

43

CVE-2018-8589

For exploitation is enough to fill buffer with pointers to shellcode. Return address of SfnINOUTNCCALCSIZE

will be overwritten and execution hijacked

Vulnerability will lead to asynchronous copying of the lParam structure controlled by the attacker

44

Framework

CVE-2018-8589 led to bigger discoveries as it was a part of a larger exploitation framework

• AV evasion

• Choosing appropriate exploit reliably

• DKOM manipulation to install rootkit

Framework purposes

45

Framework - AV evasion

Exploit checks the presence of emet.dll and if it is not present it uses trampolines to execute all functions

• Searches for patterns in text section of system libraries

• Uses gadgets to build fake stack and execute functions

/* build fake stack */

push ebp

mov ebp, esp

push offset gadget_ret

push ebp

mov ebp, esp

push offset gadget_ret

push ebp

mov ebp, esp

…

/* push args*/

…

/* push return address*/

push offset trampilne_prolog

/* jump to function */

jmp eax

46

Framework - Reliability

Exploit may be triggered more than once

For reliable exploitation proper mutual exclusion is required

Otherwise execution of multiple instances of EOP exploit will lead to BSOD

Use of CreateMutex() function may arouse suspicion

47

Framework - Reliability

Existence of memory block means exploit is running

Create Mutex

48

Framework - Reliability

Framework may come with multiple exploits (embedded or received from remote resource)

Exploits perform Windows OS version checks to find if exploit supports target

Framework is able to try different exploits until it finds an appropriate one

Each exploit provides interface to execute provided kernel shellcode

Maximum for embedded exploits We have seen 4 different exploits

49

Framework - Armory

CVE-2018-8589 CVE-2015-2360 CVE-2018-8611 CVE-2019-0797

? ? ?

We have found 4. But the maximum is 10?

50

Case 3

CVE-2018-8611

Race condition in tm.sys driver

Code is written to support next OS versions:

• Windows 10 build 15063

• Windows 10 build 14393

• Windows 10 build 10586

• Windows 10 build 10240

• Windows 8.1

• Windows 8

• Windows 7

New build of exploit added support for:

• Windows 10 build 17133

• Windows 10 build 16299

Allows to escape the sandbox in Chrome and Edge because

syscall filtering mitigations do not apply to ntoskrnl.exe syscalls

51

CVE-2018-8611

tm.sys driver implements Kernel Transaction Manager (KTM)

It is used to handle errors:

• Perform changes as a transaction

• If something goes wrong then rollback changes to file system or registry

It can also be used to coordinate changes if you are designing a new data storage system

52

CVE-2018-8611

Resource manager objectsTransaction objectsEnlistment objects

KTM Objects

Transaction manager objects

Transaction - a collection of data operations

Resource manager - component that manages data resources that can be updated by transacted operations

Transaction manager - it handles communication of transactional clients and resource managers

It also tracks the state of each transaction (without data)

Enlistment - an association between a resource manager and a transaction

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/resource-manager-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/transaction-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/enlistment-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/transaction-manager-objects

53

CVE-2018-8611

To abuse the vulnerability the exploit first creates a named pipe and opens it for read and write

Then it creates a pair of new transaction manager objects, resource manager objects, transaction objects

Transaction 1 Transaction 2

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/transaction-manager-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/resource-manager-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/transaction-objects

54

CVE-2018-8611

Transaction 1

Transaction 2

55

CVE-2018-8611

Exploit creates multiple threads and binds them to a single CPU core

Thread 1 calls NtQueryInformationResourceManager in a loop

Thread 2 tries to execute NtRecoverResourceManager once

56

CVE-2018-8611

Exploitation happens inside third thread

This thread executes NtQueryInformationThread to get last syscall of thread with RecoverResourceManager

Successful execution of NtRecoverResourceManager will mean that race condition has occurred

At this stage, execution of WriteFile on previously created named pipe will lead to memory corruption

57

CVE-2018-8611

CVE-2018-8611 is a race condition in function TmRecoverResourceManagerExt

Check that ResourceManager is online at function start

Check that enlistment is finalized

But it may happen that ResourceManager will be destroyed before all enlistments will be processed

…

58

CVE-2018-8611

Microsoft fixed vulnerability with following changes:

• Check for enlistment status is removed

• Check that ResourceManager is still online is added

59

CVE-2018-8611

We have control over enlistment object. How to exploit that?

There are not many different code paths

We are able to AND arbitrary value if it passes a check.

Seems to be hard to exploit.

60

CVE-2018-8611

We have control over enlistment object. How to exploit that?

There are not many different code paths

We can craft our own object (PVOID)(v10 + 64)

61

CVE-2018-8611

62

CVE-2018-8611

Dispatcher objects:

nt!_KEVENT

nt!_KMUTANT

nt!_KSEMAPHORE

nt!_KTHREAD

nt!_KTIMER

…

dt nt!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER

…

dt nt!_DISPATCHER_HEADER

+0x000 Lock : Int4B

+0x000 LockNV : Int4B

+0x000 Type : UChar

+0x001 Signalling : UChar

…

63

CVE-2018-8611

dt nt!_KOBJECTS

EventNotificationObject = 0n0

EventSynchronizationObject = 0n1

MutantObject = 0n2

ProcessObject = 0n3

QueueObject = 0n4

SemaphoreObject = 0n5

ThreadObject = 0n6

GateObject = 0n7

TimerNotificationObject = 0n8

TimerSynchronizationObject = 0n9

Spare2Object = 0n10

Spare3Object = 0n11

Spare4Object = 0n12

Spare5Object = 0n13

Spare6Object = 0n14

Spare7Object = 0n15

Spare8Object = 0n16

ProfileCallbackObject = 0n17

ApcObject = 0n18

DpcObject = 0n19

DeviceQueueObject = 0n20

PriQueueObject = 0n21

InterruptObject = 0n22

ProfileObject = 0n23

Timer2NotificationObject = 0n24

Timer2SynchronizationObject = 0n25

ThreadedDpcObject = 0n26

MaximumKernelObject = 0n27

64

CVE-2018-8611

Provide fake EventNotificationObject

65

CVE-2018-8611

While current thread is in a wait state we can modify dispatcher object from user level

We have address of _KWAIT_BLOCK, we can calculate address of _KTHREAD

0: kd> dt nt!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER

+0x018 SListFaultAddress : Ptr64 Void

+0x020 QuantumTarget : Uint8B

+0x028 InitialStack : Ptr64 Void

+0x030 StackLimit : Ptr64 Void

+0x038 StackBase : Ptr64 Void

+0x040 ThreadLock : Uint8B

...

+0x140 WaitBlock : [4] _KWAIT_BLOCK

+0x140 WaitBlockFill4 : [20] UChar

+0x154 ContextSwitches : Uint4B

...

_KTHREAD = _KWAIT_BLOCK - 0x140

66

CVE-2018-8611

Modify dispatcher object, build SemaphoreObject

0: kd> dt nt!_KMUTANT

+0x000 Header : _DISPATCHER_HEADER

+0x018 MutantListEntry : _LIST_ENTRY

+0x028 OwnerThread : Ptr64 _KTHREAD

+0x030 Abandoned : UChar

+0x031 ApcDisable : UChar

mutex->Header.Type = SemaphoreObject;

mutex->Header.SignalState = 1;

mutex->OwnerThread = Leaked_KTHREAD;

mutex->ApcDisable = 0;

mutex->MutantListEntry = Fake_LIST;

mutex->Header.WaitListHead.Flink =

0: kd> dt nt!_KWAIT_BLOCK

+0x000 WaitListEntry : _LIST_ENTRY

+0x010 WaitType : UChar

+0x011 BlockState : UChar

+0x012 WaitKey : Uint2B

+0x014 SpareLong : Int4B

+0x018 Thread : Ptr64 _KTHREAD

+0x018 NotificationQueue : Ptr64 _KQUEUE

+0x020 Object : Ptr64 Void

+0x028 SparePtr : Ptr64 Void

67

CVE-2018-8611

waitBlock.WaitType = 3;

waitBlock.Thread = Leaked_KTHREAD + 0x1EB;

0: kd> dt nt!_KWAIT_BLOCK

+0x000 WaitListEntry : _LIST_ENTRY

+0x010 WaitType : UChar

+0x011 BlockState : UChar

+0x012 WaitKey : Uint2B

+0x014 SpareLong : Int4B

+0x018 Thread : Ptr64 _KTHREAD

+0x018 NotificationQueue : Ptr64 _KQUEUE

+0x020 Object : Ptr64 Void

+0x028 SparePtr : Ptr64 Void

Call to GetThreadContext(…) will make

KeWaitForSingleObject continue execution

Add one more thread to WaitList with WaitType = 1

68

CVE-2018-8611

Fake Semaphore object will be passed to KeReleaseMutex that is a wrapper for KeReleaseMutant

Check for current thread will be bypassed because we were able to leak it

69

CVE-2018-8611

Since WaitType of crafted WaitBlock is equal to three, this WaitBlock will be passed to KiTryUnwaitThread

70

CVE-2018-8611

KiTryUnwaitThread is a big function but the most interesting is located at function end

This was set to Leaked_KTHREAD + 0x1EB

We are able to set Leaked_KTHREAD + 0x1EB + 0x40 to 0!

71

CVE-2018-8611

KTHREAD + 0x22B

0: kd> dt nt!_KTHREAD

...

+0x228 UserAffinity : _GROUP_AFFINITY

+0x228 UserAffinityFill : [10] UChar

+0x232 PreviousMode : Char

+0x233 BasePriority : Char

+0x234 PriorityDecrement : Char

72

CVE-2018-8611

One byte to rule them all

73

CVE-2018-8611

With ability to use NtReadVirtualMemory, further elevation of privilege and installation of rootkit is trivial

Possible mitigation improvements:

• Hardening of Kernel Dispatcher Objects

• Validation with secret for PreviousMode

Abuse of dispatcher objects seems to be a valuable exploitation technique

• Huge thanks to Microsoft for handling our findings very fast.

• Zero-days seems to have a long lifespan. Good vulnerabilities survive mitigations.

• Attackers know that if an exploit is found it will be found by a security vendor. There is a shift to implement

better AV evasion.

• Two exploits that we found were for the latest builds of Windows 10, but most zero-day that are found are

for older versions. It means that effort put into mitigations is working.

• Race condition vulnerabilities are on the rise. Three of the five vulnerabilities that we found are race

conditions. Very good fuzzers (reimagination of Bochspwn?) or static analysis? We are going to see more

vulnerabilities like this.

• Win32k lockdown and syscall filtering are effective, but attackers switch to exploit bugs in ntoskrnl.

• We revealed a new technique with the use of dispatcher objects and PreviousMode.

74

Conclusions

Momigari: Overview of the latest Windows OS kernel exploits
found in the wild

Twitter: @antonivanovm

Anton Ivanov

Kaspersky Lab

Twitter: @oct0xor

Boris Larin

Kaspersky Lab Q&A ?

